
AD-A269 262o Ye
lilt~ ~~~ H)11111111

A Report

Prepared For TE LJIECT

CONMML CORPORATION SEP 101993

A D

RECOMMENDATIONS FOR AN INITIAL SET OF SOFTWARE METRICS

CrC-TR-89-017

December 12, 1989

(- - ~ ~iL, putilic :.~ vced i
* distributiona 1 1 Stjj ; it s

Prepared by.

Shari Lawrence Pfleeger

Contel Technology Center
15000 Conference Center Drive

P.O. Box 10814

O Chantilly, Virginia 22021-3808

C()

!V

d• >
Released fcr publication

Alan B. Salisbury, President, Contel Technol gy Center

© 1989, Contel Corporation. All rights reserved.

4 4.

The Contel Technology Center's Software Engineering Laboratory (SEL) has as one of its
goals the improvement of productivity and quality throughout Contel Corporation. The
SEL's Process and Metrics Project addresses that goal in part by recommending metrics to
be collected on each software development project throughout the corporation. This report
suggests an initial set of meics for which data are to be collected and analyzed, based on
a process maturity framework developed at the Software Engineering Institute. Metrics are
to be implemented step by step in four phases, corresponding to the maturity of the devel-
opment process. Phase 1 metrics focus on project management. Phase 2 metrics measure
the products produced during development, while Phase 3 metrics capture characteristics
of the development process itself. Phase 4 adds feedback loops to the process metrics, so
that metrics play an active and ongoing role in assessing and controlling the development
process from the very beginning of a project.

The classes of metrics for each phase are listed and discussed in terms of what to collect,
how to collect it, and the expected behavior and benefits of each. After defining a set of

* metrics for each phase, the report explains how the initial metrics set is to be implemented
in a Contel business unit. The explanation includes a discussion of the role of the Process
and Metrics Project, including the products and services available to every Contel organi-
zation.

- 4 --;o or... .-

N I IS C RA vI
1 I) i I At" (.J
tJ;i ,

By PIav)

S.... .~ ~....,
Av.t*:

v". .,. ',iXCTD £

iWi

EXECUTIVE SUMMARY

Dozens, if not hundreds, of software metrics are described in the software engineering

literature. The metrics chosen for a particular project play a major role in the degree to

which the project can be controlled, but deciding which metrics to use is difficult. We can

evaluate the purpose and utility of each metric only in light of the needs and desires of the

development organization. Thus, we should collect data and analyze software metrics in the

broad context of the software development process and with an eye toward understanding

and improvement. It is for this reason that we have chosen a process maturity framework

in which to place software metrics. Originating at the Software Engineering Institute in

Pittsburgh, Pennsylvania, process maturity describes a set of levels at which the

development process takes place. Only when the development process possesses a

particular structure or organization does it make sense to collect certain kinds of metrics.

Thus, rather than recommend a large (and probably unwieldy) set of metrics to be collected

on every project throughout an organization, we recommend that metrics be divided into

four phases, where each phase is based on the amount of information made available by the

development process. Metrics collection begins at Phase 1, moving on to the other phases

only when dictated by a process that can support it.

PROCESS MATURITY LEVELS

The concept of process maturity is based on the notion that some development processes

provide more structure or control than others. This notion does not judge the quality of the

particular process. Instead, it provides a framework in which to depict the several types of

processes and to evaluate what kinds of metrics are best suited for collection in each type.

Figure 0.1 depicts the five levels of process and their characteristics.

93-17193

Iv

Level Characteristics Measurement

Process + feedback
5. Optimizing Improvement fed back to process for changing process

Process + feedback
4. Managed Measured process (quantitative) for control

3. Defined Process defined, institutionalized Product

2. Repeatable Process dependent on individuals Project

1. Initial Ad hoc/chaotic Preliminary project

(baseline)

Figure 0.1 - Process Maturity Levels Related to Metrics

Level 1: Initial Process

The first level of process is termed initial and is characterized by an ad hoc approach to the
software development process. That is, the inputs to the process are defined, and the outputs
are expected, but the transition from input to output is undefined and uncontrolled. For this
level of process, the collection of metrics is difficult. Only baseline project metrics should

be gathered, to form a basis for comparison as maturity increases. Rather than concentrate
on metrics and their meanings, the developers should focus on imposing more structure and
control on the process.

Level 2: Repeatable Process

The second process level, called repeatable, identifies input, output and some controlling
mechanism. The control is usually in the form of project management, where the cost and
schedule can be tracked as the project progresses. Figure 0.2 depicts a repeatable process
as an SADT diagram, where the incoming arrow on the left shows the input, the outgoing
arrow on the right the output, and the arrow from the top the control. Only project-related

metrics make sense at this level, since the activities within the actual transition from input
to output are not available to be measured. Thus, for a repeatable process, we can measure

factors such as the amount of effort needed to develop a system, the duration of the project.
the volatility of the requirements, and the overall project cost. The output can be measured

in terms of its functional size.

Control

Input = Construct the Output"I ~System.

Figure 0.2- SADT Diagram of Repeatable Process

* We recommend the following types vf measures at this level:

* Software size

a Personnel effort

• Requirements volatility

Several additional metrics may be desirable, depending on the characteristics of the project

and the needs of project management. Many studies of project cost indicate that experience
and employee turnover can have a significant impact on overall project cost. Thus, the
following items can be added to the Phase 1 metrics set at the discretion of management.

0 Experience

6 Employee turnover

Level 3: Defined Process

The third process level is called defined, because the activities of the process are clearly
* defined, as depicted in Figure 0.3.

Construct .

Figure 0.3 - SADT Diagram of Defined Process

This additional structure means that we can examine the input to and output from each
functional activity performed during development. The box of Figure 0.2 can be exploded
to view the activities necessary to construct the final system. Figure 0.3 describes three
typical activities: design, build parts and assemble. However, different processes may be
partitioned into more or fewer distinct functions or activities. Figure 0.4 is an example
process, displaying the details of input, output and control for each activity.

DesgnmetodInspection Target

Rer DEFINE, System CODE, Tested INTE- Software

DESIGN iiUII I I.. . .

Figure 0.4 - Example of a Particular Defined Process

ViU

Because the activities are delineated and distinguished from one another, the products from

each activity can be measured and assessed. In particular, project managers can look at the
complexity of each product. That is, we can examine the complexity of the requirements,

design, code and test plans, and assess the quality of the requirements, design, code and
testing,

In terms of complexity, we suggest that the following items be examined first for a defined

process:

* Requirements complexity

a Design complexity

"a Code complexity

0 Test complexity

One perspective from which to view the quality of the products is examination of the
number of faults in each product and the density of defects overall. In addition, the
thoroughness of testing can be assessed. Thus, our recommended quality metrics include:

• Defects discovered

* Defects discovered per unit size (defect density)

* Requirements faults discovered

• Design faults discovered

• Code faults discovered

We emphasize that this set does not represent the full spectrum of quality measures that can

be employed. Issues of maintainability, utility, ease of use, end other aspects of quality

software are not addressed by defect counts. However, defect analysis is relatively easy to
implement, and it provides a wide spectrum of useful information about the reliability of

the software and the thoroughness of testing.

viii

An additional product metric may be desirable. When customer requirements dictate that

significant amounts of documentation be written (as often happens on government

contracts), the number of pages of documentation may be a desirable characteristic to track

and correlate witi effort or duration. Thus, the set of product metrics may also include

0 Pages of documentation

Level 4: Managed Process

The managed process is the fourth level of maturity; enough control is available for each
process activity to allow us to measure overall process characteristics. As shown in Figure

0.5, this level allows measurements to be made across, activities. Because activities can be

compared and contrasted, the effects of changes in one activity can be tracked in the others.

For example, we can measure and evaluate the effects of major process factors such as

reuse, defect-driven testing, and configuration management. The measures collected are

used to control and stabilize the process, so that productivity and quality match

expectations.

Figure 0.5 - SADT Diagram of Managed Process

Hgure 0.6 illustrates how a particular managed process might look. Metrics are used in

feedback loops to report on the number of design defects and on the number and types of

problems encountered with specific ver.ions of the system. Then, project management uses

the metrics information to make decisions about course corrections.

ix

Reporting requirements from senior management

MANAGEChanged sequence
Redesign for integration

DFNBUILD SystemSi i liielen
t.......

.

Design defects Problems with
eaqry versions

Figure 0.6 - Example of a Managed Process

* If the maturity of the process has reached the managed level, then process-wide metrics can
be collected and analyzed. These metrics reflect characteristics of the overall process and
of the interaction among components of the process. A distinguishing characteristic of a
managed process is that the development of software can be carefully controlled, Thus, a
major characteristic of the recommended metrics is that they help management to control
the development process.

We recommend that the following types of data be collected for a managed process. In

some cases, the actual metics must be defi-,ed and analyzed to suit the development
organization.

"* Process type

"* Amount of producer reuse

"* Amount of consumer reuse

"* Defect identification

• Use of defect density model for testing

* Use of configuration management

a Module completion over time

• Capital intensity

All of the process metrics described above are to be used in concert with the metrics

discussed in earlier sections. Relationships can be determined between product

characteristics and process variables to assess whether certain processes or aspects of the
process are effective at meeting productivity or quality goals. The list of process measures

is by no means complete. It is suggested only as an initial attempt to capture important

information about the process itself.

Level 5: Optimizing Process

An optimizing process is the ultimate level of process maturity; it is depicted in Figure 0.7.

Here, measurements are fed back to project management as development progresses, so
that decisions about both activities and the process itself can be made based in part on the

metrics.

S~Tn

Figure 0.7 - SADT Diagram of Optiml7Ing Process

This dynamic tailoring of the process to the situation is indicated in the figure by the

collection of process boxes labelled T0, T1, ..., To. At time T0 , the process is as represented

by box T0. However, at time Ti, management has the option of revising or changing the

Xi

overall process. For example, the project manager may begin development with a standard

waterfall approach. As requirements are defined and design is begun, metrics may indicate

a high degree of uncertainty in the requirements. Based on this information, the process

may change to one that prototypes the requirements and the design, so that we can resolve

some of the uncertainty before substantial investment is made in implementation of the

current design. In this way, an optimizing process gives maximum flexibility to the

development. Metrics act as sensors and monitors, and the process is not only under control

but is dynamic, too.

Studies by the Software Engineering Institute of 113 software development organizations

report that 85% of those surveyed were at level 1, 14% were at level 2, and 1% were at level

3. That is, none of the development projects had reached levels 4 or 5: the managed or

optimizing levels, Based on these results, and the highly unlikely prospect of finding a level

5 project, our recommendations for initial metrics include only the first four levels.

STEPS TO TAKE IN USING METRICS

Meticr; are most useful only when implemented in a careful sequence of process and

metrics activities. These activities lay the groundwork for effective project management by

evaluating the needs and characteristics of development before the appropriate phase of

metrics collection is identified. The typical development organization should take the
rollowing -steps:

Assess the process: Working with a set of guidelines or with the Process and

Metrics team, detennine the level of process maturity achievable (for a proposed

project) or implemented (for an on-going one).

Determine the appropriate phase of metrics collection: Once the process level is

known, decide which phase of metrics collection is most appropriate. This decision

may require further consultation with the Process and Metrics team.

Recommend metrics, tools, techniques: When the types of metrics are determined,

identify tools and techniques to be used on the project. Choose these tools and

techniques with the overall goals of the project in mind. Whenever possible,

implement automated support for metrics collection and analysis as part of the

project development environment. It is essential that metrics collection and analysis

xii

not impede the primary development activities; thus, metrics collection and analysis

should be as unobtrusive as possible.

Estimate project cost and schedule: Having determined the process level and

selected the development environment, estimate the cost and schedule of the
project. By using measures implemented at Phase 1, continue to monitor the actual
cost and schedule during development.

Collect approprlate level of metrics: Oversee the collection of metrics.

Constiuct project database: Design, develop and populate a project database of

metrics data. This database can be used for analysis, where appropriate. Track the
value of metrics over time to understand how project and product characteristics

change.

Evaluate cost and schedule: When the project is complete, evaluate the initial

estimates of cost and schedule for accuracy. Determine which of the factors may
account for discrepancies between predicted and actual values.

* Evaluate productivity and quality: Make an overall assessment of project

productivity and product quality based on the metrics available.

Form a basis for future estimates: Incorporate the project metrics in a corporate or
organizational metrics database. This larger database can provide historical

information as a basis for estimation on future projects. In addition, the database can

be used to suggegt the most appropriate tools and techniques for proposed projects.

EXPECTED BENEFITS

The increased understanding of the process and control of the project offered by a process

maturity approach outweigh the effort needed to capture, store and analyze the information
required. Objective evaluation of any new technique, tool or method is impossible without

quantitative data describing its effect. Thus, the use of metrics in a process maturity

framework should result in:

• Enhanced understanding of the process

xiii

a Increased control of the process

0 A clear migration path to more mature process levels

a More accurate estimates of project cost and schedule

• More objective evaluations of changes in technique, tool or method

* More accurate estimates of the effects of changes on project cost and schedule

xiv

STABLE OF CONTENTS

ABSTR CT,,.,... ,,,. ... ,,,....,,.,,,..,,..,....0 iii

T1'ABLE OF O TE T *,,,, , ,,,,.,,a..........,............. xv
L19T OF FIGURES xvUi

I INTRODUCTION ... 1-1

1.1 W hy M etrics? 1.1
1.2 Purpose and Goals of the Software Metrics Program 1-1

* 1.3 Evolution of the Software Metlics Recommendations ... 1 .3

1.4 Description of the Remainder of the Document 1-4

2 EMBEDDING SOFTWARE METRICS IN A PROCESS
,•MATURITY FRAMEWORK o................ 2-1

2.1 Rationale .. 2-1

2.2 Process Maturity Levels .. 2-1

2.3 Expected Benefits .. 2-7

3 INITIAL SET OF RECOMMENDATIONS 3-1

3.1 Format of Recommendations .. 3-1

3.2 Phase 1: Project M etrics .. 3-1

3.2.1 Type: Software Size .. 32

3.2.2 Type: Personnel Effort ... 3-7

3.2.3 Type: Requirements Volatility .. 3-10

3.2.4 Possible Additional Project Management Metrics 3-12

3.3 Phase 2: Product Metrics ... 3-14

3.3.1 Type: Requirements Complexity 3-15

3.3.2 Type: Design Complexity .. 3-17

S3.3.3 Type: Code Complexity .. 3-21

xv

TABLE OF CON ET S .(Con.)/• P

3.3.4 Type: Test Complexity ... 3-24

3.3.5 Type: Defects Discovered .. 3-29

3.3.6 Type: Requirements Faults Discovered 3-32

3.3.7 Type: Design Faults Discovered ,.... 3.33

3.3.8 Type: Code Faults Discovered ... 3.34

3.3.9 Possible Additional Product Me.cs...,.. 3-34

3.4 Phase 3: Process Metrics ... 3-34

3.5 Phase 4: Process Metrics with Feedback for Change 3-37

4 USING THE METRICS SETS 4 - I

4.1 Steps to Take in Using the Metrics Sets 4-1

4.2 Benefits of Using the Metrics Sets 4-3

A APPENDIX A .. REFERENCES A-1

xvi

O ~~LIST OFFGUE

2.1 Levels of Process and Their Characteristics 2-2

2.2 SADT Diagram of Repeatable Process 2-3

2.3 SA.DT Diagram of Defined Process 2.4

2.4 Example of a Particular Defined Process 2-4

2.5 SADT Diagram of Managed Process 2-5

2.6 Example of a Managed Process .. 2-6

2.7 SADT Diagram of Optimizing Process 2-7

3.1 Program with Five Lines of Code 3-2

3.2 Function Point Computation Chart 3-3

3.3 Complexity Adjustments for Function Points 3-4

* 3.4 Graph of Size Estimates Versus Actuals 3-6

3.5 Estimates of Planned Person-Months Versus Actual and
R eported :3-9

3.6 Graph of Project Duration ... 3-10

3.7 Graph of Requirements and Changes 3-12

3.8 Graph of Experienc,, vs. Productivity 3-13

3.9 Example Requirements with Objects and Actions 3-15

3.10 Graph of Requirements and Complexity 3-17

3.11 Graph with Complexity - 5 .. 3-19

3.12 Graph of Design Complexity Compared with Total

R equirem ents ... 3-20

3.13 Graph with Complexity - 5 .. 3-22

3.14 Graph of Code Complexity Compared with Total

Requirements .. 3-23

xvii

LIST OF FIGURES (ConL)

Tiurte

3.15 Graph of Code Complexity Compared with Average

Complexity 3-24

3.16 Sample FORTRAN Program ,................................ 3-25

3.17 Flow Chart of FORTRAN Program 3-26

3.18 Graph of Test Complexity Compared with Requirements

Com plexity .. 3-28

3.19 Graph of Defects Discovered Over Time 3-30

3.20 Graph of Percentage of Defects Corrected Over Time 3-31

xviii

SECTION 1

INTRODUCTION

1.1 WHY METRICS?

Software plays a major role at Contel, from the systems used to assign new telephone

services to the tracking and routing done in support of communications satellites.
Corporate success depends on the quality of Contel's products and on Contel's ability to

p, respond to its customers in a timely fashion and at a reasonable cost. Thus, management
,I and control of Contel's software development are paramount in assuring that software

products are built on time, within budget and in accordance with a stringent set of quality
goals.

Software metrics are essential to understanding, managing and controlling the development
process, Quantitative characterization of various aspects of development involves a deep

understanding of software development activities and their interrelationships, In turn, the
measures that result can be used to set goals for productivity and quality and to establish a
baseline against which improvements are compared. Measurements examined during

development can point to "hot spots" that need further attention, analysis or testing.
Projections and predictions about future projects can be made based on data collected from
past projects. Assessments can be made of appropriate tools and strategies, and the
development process and environment can be tailored to the situation at hand.

This technical report describes a program for the incorporation of metrics in the software
development process at Contel. As pan of the Process and Metrics Project, the Software
Metrics Program provides both services and products to facilitate the use of metrics
throughout the corporation.

1.2 PURPOSE AND GOALS OF THE SOFTWARE METRICS PROGRAM

The Contel Technology Center's Software Engineering Laboratory (SEL) has as one of its
goals the improvement of productivity and quality throughout Contel Corporation. The

SEL's Process and Metrics Project addresses tnat goal in part by recommending metrics to

be collected on each of Contel's software development projects. These metrics can be help:

1.1

4 Determine the amount and kind of software development being done at Contel (that

is, to find out what we are doing)

. Characterize the approaches to software development and the environments in
which development Is being done (that is, to find out how we are doing it)

a Assess productivity and quality for current development projects (that is, to find out
how well we ane doing it)

° Predict and guide the productivity and quality for proposed development projects

(that is, to control what we do in the future)

Correspondingly, there are two different contexts in which to analyze the metrics: as
indicators of status on current projects, and as predictors for future projects. Databases of
status information from a collection of existing projects can be amalgamated into a
corporate historical database from which predictions can be made for projects being

planned. An individual project can measure and track items such as effort expended on the
project, number of lines of code produced, number of problems reported, and so on, In

addition, input to an estimation tool can be stored, Including descriptions of the project
team, development environment, constraints imposed by the requirements, and projected
size of the final product. These characteristics and the resultant output can be tracked and
compared with final measurements to determine not only the accuracy of the estimation
tool but also the degree to which the final characteristics match those intended initially.

The corporate historical database can be used in many ways to plan for future development.
For example, data can be analyzed to determine the average productivity on a project and

how that productivity is affected by the use of different processes, tools and methods.
Trade-offs among tools and methods can be determined, so that the best tools and
techniques can be chosen for a project based on their success on similar projects in the past.

Finally, the cost and schedule of the planned project can be estimated based on cost and

schedule information from previous, similar ones.

To support a corporate metrics effort, the Process and Metrics Project team keeps abreast

of metrics-related methods, tools and techniques that can assist the business units in their
development activities. In particular, the Project acts as a repository of information about

1-2

* automated metrics data collection and analysis tools, project management software, and
cost and schedule estimation tools and techniques.,

1.3 EVOLUTION OF THE SOFTWARE METRICS RECOMMENDATIOQNS

By supplementing the repository of tools and techniques with basic and applied research,
the Process and Metrics Project plans to offer a variety of services and products to Contel
business units in response to their metics needs. Over the next three to five years, the
products and services will include:

Products:

a A recommended set of metrics to be collected company-wide

a Metrics analysis tools

. Project metrics databases and a corporate historical database

* A decision support tool for assisting project managers in defining, adapting,

implementing, measuring and controlling a project's progress

Services:

0 Process maturity assessment

0 Assistance in developing action plans

* Recommendations for metrics data collection and analysis tools, cost estimation
tools and traceability tools

a Seminars, training sessions and technical reports on metrics, process maturity, cost
estimation, and software quality and productivity

The initial set of metrics described herein is preliminary to a larger, more comprehensive
set of metrics recommendations. In fact, the final set of recommended metrics suggested
by the Software Metrics Program will be the result of a multi-stage process. First, the
business goals, organizations and commitments of the corporation were reviewed and

* discussed. Next, the initial metrics set was proposed. This initial set is being collected on

1-3

a set of pilot projects spread among several business units. The use of the metrics on these

projects will be evaluated in light of the following issues:

a Are the metrics definitions realistic?

4 Are the metrics definitions applicable to all projects?

• Are data collection and analysis an unreasonable burden to the projects?

* Are the meutics data useful?

After the results are analyzed, a final recommendation is expected to be made in late 1990.

1.4 DESCRIPTION OF THE REMAINDER OF THE DOCUMENT

The collection of metrics makes sense only when associated with a process context or
framework. In other words, dam should be collected and analyzed only when they make
sense for the software development process being used. This report suggests an initial set
of metrics for which data are to be collected and analyzed based on a process maturity

framework developed at the Software Engineering Institutel, 'The following sections of
this document present and explain the process maturity framework, relating the types of
metrics to be collected with each level of the hierarchy, As will be shown, the maturity of

the process corresponds loosely to the degree to which the process activities are well-
defined and controllable. Thus, metrics are to be implemented step by step in four phases,
corresponding to the maturity of the development process.

0 Phase 1 metrics focus on project management.

* Phase 2 metrics measure the products produced during development,

a Phase 3 metrics capture characteristics of the development process itself, including

feedback to control the process.

0 Phase 4 adds more feedback loops, so that metrics play an active and ongoing role,

not only in assessing and controlling the development process from the very
beginning of a project but also in dynamically changing the process itself if need be.

1.4

1The classes of metrics for each phase are listed and discussed in terms of what to collect,

how to collect it, and the expected benefits of each class. After defining a set of metrics for

each phase, the report explains how the initial meics set is to be implemented in a Contel

business unit.

1-5

EMBEDDING SOFTWARE METRICS IN A PROCESS MATURITY
FRAMEWORK

2.1 BflQ.&LE

Dozens, if not hundreds, of software metrics are described In the software engineering
literature. The purpose and utility of each can be evaluated only in light of the needs and
desires of the development organization that uses it, Thus, the collection of data and the
anslysis of software metrics must be performed in the broad context of the software
development process and with an eye toward understanding and improvement, It is for this
reason that the CTC Software Engineering Laboratory's Process and Metrics Project has
chosen a process maturity framework hi which to place software metrics, Originating at
the Software Engineering Institute, a federally funded research and development center in
Pittsburgh, Pennsylvania, process maturity describes a set of levels at which the
development process takes place. Only when the development process possesses a
particular structure or organization does it make sense to collect certain kinds of metrics.

Therefore, rather than recommend a large (and probably unwieldy) set of metrics to be
collected on every project throughout the corporation, the initial set of recommended
metrics is divided into four phases. The business unit adopting the recommendations
begins at Phase 1, moving on to the other phases only when dictated by a process that can
support such metrics collection. The remainder of this section explores the idea of process
maturity and explains how process maturity levels are integrated with metrics collection.

2.2 PRO.;ES5 MATURITY LEVELS

The concept of process maturity is based on the notion that some development processes
provide more structure or control than others. This notion provides a framework in which
to depict the several types of processes and evaduate what kinds of metrics are best suited
for collection in each type. Figure 2.1 depicts the five levels of process and their
characteristics.

2-1

Level Characteristics Measurement

Process + feedback
5. Optimizing Improvement fed back to process for changing process

Process + feedback

4. Managed Measured process (quantitative) for control

3, Defined Process defined, institutionalized Product

2. Repeatable Process dependent on individuals Project

1. Initial Ad hoc/chaotic Preliminary project
(baseline)

Figure 2.1 - Levels of Process and Their Characteristics

The first level of process is termed initial, It is characterized by an ad hoc approach to the

software development process. That is, the inputs to the process are defined, and the
outputs are expected, but the transition from input to output is undefined. Similar projects
may vary widely in their productivity and quality characteristics, due to lack of adequate

structure and control. For this level of process, the collection of metrics is difficult.

Developers should focus on imposing more stnicture on the process. At the same time,
however, preliminary project measurements can be taken to form a baseline for later

comparison. That is, as the process improves, the degiee of improvement can be

demonstrated in part by comparing new project measurements with the baseline ones.

The second process level, called repeatable, identifies input, output and some controlling

mechanism. The control is usually in the form of project management, where the cost and

schedule can be tracked as the project progresses. Figure 2.2 depicts a repeatable process

as an SADT diagram, where the incoming arrow on the left shows the input, the uutgoing

arrow on the iight the output, and the arrow from the top the control of the process. For

example, the requirements rrmay be the input to the process, with the software system as

2-2

output. The control arrow represents constraints, such as schedule, budget, tools, standards
and other management control directives.

Control

Input CntutheOutput

Figure 2,2 - SADT Diagram of Repeatable Process

Project-related metrics make sense at this level, since the activities within the actual
transition from input to output are not available to be measured. Thus, measurements can
be made of the amount of effort needed to develop a system, the duration of the project,
the volatility of the requirements, and the overall project cost. The output can be measured
in terms of its physical or functional size, and the resources used to produce that output can
be viewed relative to size to yield productivity.

The third process level is called defined, because the activities of the process are clearly
defined, as depicted in Figure 2.3. rhis additional structure means that we can examine the
input to and output from each functional activity performed during development. The box
of Figure 2.2 can be exploded to view the activities necessary to construct the final system.

Figure 2.3 describes three typical activities: design, build parts and assemble.

2-3

the System

Figure 2.0 - SADT Diagram of Defined Process

However, different processes may be partitioned into more or fewer distinct functions or
activities. Figure 2.4 displays an example of a particular process; it shows details of the
input, output and control fo, each activity of the process.

DesgnmetodInspection TargetDesig method Criria Environment

ments Design Modules GRATE _System
-- DESIGN 'UNITTS.r. "

Figure 2.4 - Example of a Particular Defined Process

Because the activities are delineated and distinguished from one another, the products from
each activity can be measured and assessed. In particular, project managers can look at the

2.4

complexity of each product. That is, the complexity of the requirements, design, code and
test plans can be examined, and the quality of the requirements, design, code and testing

can be assessed.

The managed process is the fourth level of maturity, where enough control is available for

each process activity to allow overall process characteristics to be measured. As shown in
Figure 2.5, this level allows measurements to be made across activities. Because activities

can be compared and contrasted, the effects of changes in one activity can be tracked in the

others. For example, the effects of major process factors such as reuse, defect-driven

testing, and configuration management can be measured and evaluated. The measures

collected are used to control and stabilize the process, so that productivity and quality

match expectations.

Figure 2.5 - SADT Diagram of Managed Process

Figure 2.6 illustrates how a particular managed process might look. Metrics are used in

feedback loops to report on the number of design defects and on the number and types of
problems encountered with specific versions of the system. Then, project management

uses the metrics information to make decisions about "course corrections".

2-5

Reporting requirements from senior management

Directives for new emphasis

MANAGE DI .Changed sequence

Redesign for integration

|~ euiemnt D I . . IBUILD, SystemI i T EST ..
Design defects Problems with

early versio n%

Figure 2.6 - Example of a Managed Process

The final level of process maturity, shown in Figure 2.7, is one that allows the

measurements to be fed back to project management as development progresses, so that

decisions about activities can be made based in part on the metrics themselves. This
optimizing process helps to assure that course corrections can be made as an ongoing

project is monitored. The optimization may involve a change in the process itself,

depending on what is determined from the metrics reported during development. The

dynamic tailoring of the process to tie situation is indicated in Figure 2.7 by the collection

of process boxes labelled To, TI, ..., Tn. At time To, the process is as represented by box

Tr0. However, at time Ti (i greater tharn 0), management has the option of revising or

changing the overall process. For example, the project manager may begin development
with a standard waterfall approach. As requirements are defined and design is begun,

metrics may indicate a high degree of uncertainty in the requirements. Based on this
information, the process may change to one that prototypes the requirements and the

design, so that the uncertainty is resolved before substantial investment is made in

implementation of the current design. In this way, an optimizing process gives maximum

flexibility to the development. Metrics act as sensors and monitors, and the process is not

only under control but is dynamic, too. 0

2-6

iI J

Figure 2.7 - SADT Diagram of Optimizing Process

2.3 EXPECTED BENEFITS

* The process maturity framework for metrics provides several major benefits for a Contel

business organization. First, the framework requires management to assess the process

level for a given project or set of projects and to decide either where the software

development process is or where it should be, Second, once the desired level is determined,
the associated metrics offer to management the level of support xw'eded to manage and

control the development effort. The more control desired, the larger the set of metrics to
be collected and analyzed. Finally, the process maturity framework acts as a set of

guidelines to allow gradual movement from one level to another in a particular
development organization. That is, if management decides that more control is needed, the

process levels and metrics provide a vehicle for the establishment of that control and the

monitoring of its effect. Likewise, improvement can be measured and documented.

The next section addresses the initial recommended set of metrics in more detail. Each

phase of metrics implementation is described in terms of type of metrics, purpose for

collection, expected benefits, and methods of collection and analysis.

2-7

INITIAL SET OF RECOMMENDATIONS

3.1 FORMAT OF RECOMMENDATIONS

This section describes the initial set of recommended metrics for collection at Contel. As

noted in Section 2, the metrics are grouped by phase, with each phase corresponding to a

process maturity level. Within a phase's metrics group, each metric is defined by the

following characteristics:

0 Type/class of metric: the overall class of measurements being described

a Name of candidate metric(s): particular metrics that measure the characteristic

addressed by the class

0 Purpose and benefit of metric: why collection and analysis of this class of data are

* useful

0 Data required for metric calculation: what to measure and rules governing the

measurement

3.2 PHASE 1: PROJECT METRICS

The project metrics correspond to a repeatable process level, although preliminary, baseline

measurements may be taken at the initial process level, They include the following types

of measures:

• Software size

. Personnel effort

6 Requirements volatility

Each type of metric is discussed in turn.

3-1

3.2.1 TYPE; SOFTWARE SIZE

This class of metric captures some information about the amount of software being
produced. It is widely acknowledged that there are several dimensions to software size,
including physical size and functionality, The metrics collected in Phase 1 should include
at least one of these dimensions.

Non-commented source lines of code

A line of code is any line of program text that is not a comment or blank line,
regardless of the number of statements or fragments of statements on the line. This
definition specifically includes all lines containing program headers, declarations,
and executable and non-executable statements, Thus, the program In Figure 3.1 has
five lines of code:

LINE

1 X :- 0; Y :- AA2+LOG(B)+C;

2 IF X<Y

3 THEN

4 R:- X!Y

5 Fl;

Figure 3.1 - Program with Five Lines of Code

This definition is the predominant one used by researchers and practitioners 2. Thus,
its use allows easy comparison of Contel results with those of other companies and
organizations. The number of lines of code (LOC) is often reported in thousands of
lines of code (KLOC).

3 -2

Function points

Function points were introduced at IBM 3 to measure the amount of functionality

inherent in a software product, rather than merely the physical size. Function points

avoid the issue of variation in coding style that is often a concern of those who
measure size using lines of code. The measure is calculated in three steps:

computing the number of unadjusted function points (based on the inputs and

outputs of the system), adjusting for complexity and calculating the final number of

function points. The first step is taken by completing the chart shown in Figure 3,2.

ITEM COUNT WEIGHT FP
Simple Average Complex

Number of distinct 3 4 6
input data items

Number of output 4 5 7
screens or reports

Number of types of 3 4 6
on-line queries

Number of files 7 10 15

Number of interfaces 5 7 10

TOTAL FUNCTION POINTS:

Figure 3.2 - Function Point Computation Chart

Each of the domain items specified in column one is counted and placed in the

corresponding row of column two. For example, the number of interfaces counts

the number of unique files or programs passed across the external boundary of the

system (such as shared external utilities, math libraries, program libraries, or shared

databases or files). Then, the count is multiplied by the appropriate weight from
columns three, four or five and placed in column six. (The weight entries shown
here were derived from the judgments of IBM researchers.) The total of the sixth

column is computed for use in the second step.

3-3

Figure 3.3 displays the table used to calculate the complexity of the system. Each
of the fourteen factors is rated on a scale from 0 to 5, shown at the bottom of the
figure.

1. Does the system require reliable backup and recovery?

2. Are data communications required?

3. Are there distributed processing functions?

4. Is performance critical?

5. Will the system run in an existing, heavily used operational environment?

6. Does the system require on-line data entry?

7. Does the on-line data entiy require the input transaction to be built over
multiple screens or operations?

8. Are the master files updated on-line?

9. Are the inputs, outputs, files or inquiries complex?

10. Is the internal processing complex?

11. Is the code designed to be reusable?

12. Are conversion and installation included in the design?

13, Is the system designed for multiple installations in different organizations?

14. Is the application designed to facilitate change and ease of use by the user?
Ratings: 0 - no influence

I - incidental

2 - moderate
3 - average
4 - significant
5 - essential

Figure 3.3 - Complexity Adjustments for Function Points

3-4

The scores for each of the 14 questions are summed to form a complexity

adjustment value, Q. The final step uses the following formula to compute the total
number of function points for a given development project, wher. T is the number

of unadjusted function points from the first step:

Function Points - T*[0.65 + .01 Q]

The constants .65 and .01 were determined empirically at IBM.

Object and method count

For object-oriented projects, the number of objects and methods acts as a measure

of the functionality of the system. The objects and methods are counted according

to the following rules:

Count all objects and methods that are explicitly defined. That is, the count includes
all inherited objects and methods only if the inheritance is explicitly described in

the code.

Purpose

The software size metrics are comparative ones that are useful for determining the
relative sizes of the software produced within Contel. In addition to giving us an

idea of how one project compares with another, size is also a good measure for
partitioning a product into categories. For example, if some code is purchased and
reused, other code is reused but modified, and additional code is written from

scratch, lines of code are often used as the comparative measure: 100,000 reused

lines of code, 50,000 modified lines of code, and 35,000 new lines of code,

Size is often requested as a primary input to many effort and schedule estimation

models. A typical estimation tool will require the user to describe certain
characteristics of development: tools and techniques used, experience level of the

personnel, and so on. The descriptions are used to adjust a nominal estimate of

effort or schedule based on the size of the project in lines of code. Here, lines of

code is a subjective estimate rather than a historical data point. Similarly, function

points and object counts can be requested as input to a model or tool as an estimate

S of size. Historical databases of size measures are useful in this context for

3-5

suggesting and improving size estimates for future projects;, this historical

information helps to reduce the subjectivity inherent in any size estimate.

Data Collection

An initial size estimate is usually made at the beginning of a project. As the project

development progresses, it is helpful to re-estimate the size based on increased

understanding of the project and itý characteristics. By the end of the project when

all code is complete, the estimate has been transformed into an actual accounting of

code development. Therefore, it is recommended that estimates of size be made at

regular intervals, depending on the duration of the project. For example, if a project

is to last several years, size estimates nhould be made quaterly or monthly. Graphs

of estimated versus actual size can be plotted to help management track completed

code and plan for changes in budget or schedule4 . Figure 3.4 illustrates the type of

graph that can be generated from size measures,

KLOC----_--_----------_-m-- Total KLOC

New150

100 '" 'Purchased

50 Modified

0 _Reused

Q1 Q2 Q3 Q4 Q5

Figure 3.4 - Graph of Size Estimates Versus Actuals

3-6

Notice that the figure illustrates that size is dctermined in each of four categories:

new code, modified code, reused code, and code purchased for this project. Size

measures should be partitioned in this way for all projects at Contel. Such a division

is useful in many ways. First, for systems where integration of software products

is essential to the design, the tracking of categories of software in this fashion can

indicate how closely the planned integration matched the actual development.

Similarly, for projects where reuse plays a major role, the degree to which reused

code can be used without modification can be tracked to determine how well

expectations were met.

Tools are available for many environments to generate lines of code or object and

method counts automatically. In situations where no tool is available, a simple one

can be developed. Likewise, tools such as ASSET-R can be used to calculate the
number of function points in a planned system. Many of the function point tools

implement an enhanced version of function point calculation, including additional

factors for augmenting the unadjusted function point count. In addition, these tools

calculate a correspondence between number of function points and expected

number of lines of code, depending on the implementation language. Any of these

tools is acceptable at Corntel; the enhanced function points may yield a more precise

calculation than the original tables.

3.2.2 TYPE: PERSONNEL EFFORT

Metrics of effort must represent bcth the number of people working on the project and the

amount of time devoted by them to the project. Two such metrics are:

Actual person-months of effort

Reported person-months of effort

These measures require knowledge of the number of people working on the project

and the number of hours each one works. The number of hours is aggregated into
a measure of months for ease of use.

To capture the ntumber of people working on the project, it is important to count

engineering and management staff directly involved with any of the following:

3-7

software system planning, requirements definition, design, coding, testing,
documentation, configuration management and quality assurance.

Because many reporting schemes restrict the number of hours represented on a time
card, it is necessary to document not only the reported hours but also the actual

hours per employee.

Purpose

The measures determine the amount of effort required to complete the project. As

historical information, the effort data can be used to aid planners in estimating the

effort needed on future projects. In addition, management of the current project can
be aided by the regular collection of effort information to determine schedule
adherence.

Data Collection

For each person on the development team, the number of hours per month charged

to the project should be reported, as well as the actual number of hours worked on
the project. The total number of hours is to be reported in terms of months, and the
number of months is to be multiplied by the number of employees to yield a figure
in person-months. For those employees working only part-time on the project, the

ntimber of person-months should be calculated in terms of the number of full-time

equivalent positions.

Hours reported can be extracted from time cards; actual hours must be gathered
from development team personnel directly or through an adjunct to any reporting

tool used by each team member. In both cases, hours should be reported monthly

or quarterly, so that compliance with the planned effort can be determined, Figure
3.5 shows an example of the way in which data can be tracked.

3-S

PERSON-MONTHS
____ ____ ____Actual

150 __ _ _ _ _ _ _ _ _ _ _ __ _ _ _

loop Reported

0
Q I Q2 Q3 Q4 Q5

Figure 3.5 - Estimates of Planned Person-Months Versus Actual and
Reported

In addition, the data can be used to determine compliance with overall schedule. As
shown in Figure 3.6, the original schedule can be compared with estimates and then
revised as needed. Thus, project effort measures contain within them information
needed to estimate the duration of the project.

3-9

SCHEDULE MONTHS

20 -. Original
I NaAAN4M II

-. Current

15 ,.___- _.- ';Estimate

10 _ _....
Revised

5-

Reqts, Design Code Test Integration
Review Review Review

Figure 3.6 - Graph of Project Duration

3.2.3 TYPE: REQUIREMENTS VOLATILITY

Software development projects often explore new territory. Developers provide to the
customer not just the automation of manual activities but the implementation of functions

that can only be performed in an automated way. This expluratory venture means that the

requirements evolve as development progresses. Unfortunately, the evolution of

requirements can lead to problems with traceabdity and control. Thus, understanding the

volatility of requirements is essential to project management,

Requirements changes

Requirements volatility measures the amount of change in the requirements

specification as the project progresses. At a given point in time, the requirements
changes metric reports the sum of the number of inserts, changes and deletions up

to that time with respect to the total number of requirements for the project as ';sted

3-10

in the original requirements specification document. That is, the metric is

calculated as:

(number of insertions + changes + deletions)/(number of requirements)

•Purpose

For many projects, requirements volatility is a major factor in causing a project to

exceed its budget or schedule. Changes to the requirements are expected in the

early stages of design as the details of the system's operation are being understood

by the development team. However, at some point, the number of changes should

level off. Thus, the tracking of changes to requirements can be a useful aid in

keeping management abreast of the stability of the requirements and the adequacy

of effort and schedule estimates.

• Data Collection

The total number of requirement items must be counted. This measure must be
made in accordance with whatever accounting standard is used for reporting and

configuration management purposes. For example, some customers require that

computer software components be tracked against requirements, and the method for

enumerating requirements is part of the contract. Other development efforts

segregate requirements by the appearance of the word "shall",with each "shall"

corresponding to one requirement. Changes to the requirements include the

insertion or deletion of text as well as modification of existing text.

The original requirements specification will be used as the baseline document

against which all changes are measured. Both the total number of requirements and

the number of changes to requirements will be measured monthly or quarterly,

"depending on what is appropriate for the overall duration of development. The

measurement can be made manually or with the help of configuration management

tools.

Figure 3.7 illustrates the tracking of changes against total requirements. It reflects

the fact that the total number of requirements is likely to grow as the customer's

problem is explored by the development team. The horizontal axis can track not

3-11

only the passing of time but also the significant milestones of the development

process. A steady increase in changes to requirements after the final design is

approved may signal a problem in understanding and the likelihood of resulting

schedule and budget changes.

REQUIREMENTS
Total Reqts

150 Changes

100 _ __ ___00__

50 ___ __

Q1 Q2 Q3 Q4 Q5

Figure 3.7 - Graph of Requirements and Changes

3.2.4 POSSIBLE ADDITIONAL PROJECT MANAGEMENT METRICS

Several additional metrics may be desirable, depending on the characteristics of the project
and the needs of project management. Many studies of project cost indicate that experience

and employee turnover can have a significant impact on overall project cost. Thus, the

following items ,.an be i:dded to the Phase I metrics set at the discretion of management.

Experience

with domain/application

with development architecture

-- with tools/methods

3-12

-- overall years of experience

The experience is measured in terms of number of years of experience. It is sometimes
useful to graph the experience data with productivity data to determine if experience and
productivity are correlated. It is helpful to note the range of productivity for a given level
of experience, as the research literature reports as much as a factor of ten difference in
productivity for equivalent experience. Figure 3.8 illustrates this result.

Productivity: LOC/PM

300 1,

F. 225 -

150 a _

75 b -

0 -

1 2 3 4 5

YEARS OF EXPERIENCE

Figure 3.8 - Graph of Experience vs. Productivity

Employee turnover

Employee turnover can be measured in terms of the number or percentage of
employees leaving the project. Many managers consider turnover to be the primary
reason for failure of projects to meet schedule deadlines, Information about the
employees working on a development project can be clustered by level of
experience, using the classes described above. Turnover can be compared in a
graph with productivity or schedule to determine whether turnover appears to have

3-13

an effect on them. Such information may be useful in assessing the impact of

turnover on existing projects and on estimating turnover effects on future ones,

3.3 PHASE 2: PRODUCT METRICS

Regardless of the actual development process employed, being at the level of a defined
process means that one activity is separable from another, and distinct products are
produced. Thus, the recommended metrics for the second phase require a defined process

and address the complexity and quality of the products of each activity. In terms of

complexity, It is suggested that the following items be examined:

* Requirements complexity

- Design complexity

a Code complexity

a Test complexity

In some cases, complexity also can be considered as a measure of produ t quality. For

example, code that is less complex is of higher quality than code that is more complex.

Thus, tracking the complexity of intermediate software products can indicate the likely

quality of the code.

Another perspective from which to view the quality of the products is examination of the
number of faults in each product and the density of defects overall. In addition, the

thoroughness of testing can be assessed. Thus, quality metrics include:

• Defects discovered

• Defects discovered per unit size (defect density)

6 Requirements faults discovered

* Design faults discovered

0 Code faults discovered

3-14

It is important to note that this set does not represent the full spectrum of quality measures

that can be employed. Issues of maintainability, utility, ease of use and other aspects of
quality software are not addressed by defect counts. However, defect analysis is relatively

easy to implement, and it provides a wide spectrum of useful information about the

reliability of the software and the thoroughness of testing.

33.1 TYPE: REQUIREMENTS COMPLEXITY

The complexity of requirements plays a large role in dete,, crning the difficulty involved in
building the system. However, measuring the complexity of requirements Is compounded

by the variety of ways in which requirements are recorded and tracked. The metric
suggested here, although a simple measure of size, also captures the major components of

complexity.

Number of distinct objects and actions addressed in requirements

For each requirement specified, a count is made of the distinct objects to be
manipulated by the system and of the actions that can be performed on them or

taken by them, For example, the set of requirements in Figure 3.9 contains six
objects, each of which is bolded, and five actions, each of which is italicized.

(Bolding and italics are shown only when the object or action is first encountered,

so there is no double-counting.)

The system shall provide the capability to update the directory when creating

or modifying a Telephone Number Record (TNR).

The system shall provide the date of last update for each listing.

The system shall automatically update the directory when modifications are
made to directory fields in TNRs.

The system shall provide a Directory Activity Log, which shall be auto-
matically updated when directory-associated creations, deletions and changes
occur to TNRs.

Figure 3.9 - Example Requirements with Objects and Actions

9

3-15

Notice that only distinct objects and actions are counted. Moreover, an action is
always associated with an object. Therefore, "update" is counted twice: once for a

directory update, and once for a directory log update.

Purpose

The number of distinct objects and actions is used as an indicator of the relative
complexity of the requirements. That is, one set of requirements is considered to be
more complex than another if the first has more objects and actions. Such a measure
can be used in two ways. First, the complexity of the requirements can be tracked
over the duration of the project. As the requirements change, an increase In
complexity can be viewed as a warning that the estimates of schedule and effort
may need revision. Second, the complexity of the requirements can be viewed in
concert with the complexity of the design and code. Based on historical data, the
complexity of requirements can be used as a predictor of the expected complexity
of the subsequent products. Disparities may be indicators of problems inherent in
the design or code that do' not necessarily follow from the complexity of
requirements.

Data Collection

The count of objects and actions may be automated and incorporated in whatever
software tracks the changes to requirements. As with requirements changes, graphs
may be generated to follow the growth in complexity over time, as shown in Figure
3.10.

3.16

REQUIREMENTS; Objects & Actions
400 Total Reqts

Objects
& Actions

200-

100 _ _ _ __ _

0J
Q1 Q2 Q3 Q4 Q5

Figure 3.10 - Graph of Requirements and Complexity

3.3.2 TYPE: DESIGN COMPLEXITY

Measures of design complexity capture the aspects of design that make it difficult to

comprehend or implement, Again, the variety of methods for documenting a system's
design makes it difficult to choose a universal measure to analyze design complexity. The
measures suggested below are simple size measures but count the design components that

are responsible for contributing substantial complexity to the design.

Number of design modules

When a large number of modules is included in a design, a large number of
Interfaces contributes to the design's complexity. The design can be represented in
a number of ways, both textually and graphically. These representations may

include program design language, SADT diagrams, data structure diagrams, and
others. When the system involves a great deal of data or even a database
management system, the design may be documented in terms of entities and
relationships. Therefore, a count of the number of design modules must be tailored

3-17

to the design representation scheme. The count may be the number of entity-

relationship components, the number of program design language modules, or

something similar. The overriding factors in deciding what to count include:

Assurance that the count can be made repeatedly over the life of the system being

developed

Capture of a measure that increases along with both the. number of objects being

manipulated by the system and the number of fun ctions performed by and on those

objects

Cyclomatic complexity

The cyclomatic complexity number is based on the number of decisions embedded

in the design. It was originally aimed at measuring the number of linearly

independent paths through a program, and it is based on the graph formed by a flow

chart of the design. If the flow chart has e edges and n nodes, then the cyclomatic

complexity of the design represented by the graph is

e-n+2

For example, Figure 3.11 is the graph of a design with 13 nodes and 16 edges, so its

cyclomatic complexity is 5.

S
3-18

, :a

Figure 3.11 - Graph with Complexity = 5

Purpose

The measures of design complexity allow management to determine whether the
complexity of the design changes as development progresses. For example, if
requirements change, the impact of the changes on the design can be assessed.
Furthermore, the complexity of both the requirements and the design can be
considered when predicting the likely complexity of the resulting code.

3.19

Data Collection

Both the count of design modules and the calculation of cyclowatic complexity can
be performed manually. However, automated tools make the job much easier; and
they are available for both calculations. Many of the automated design tools include
the ability to count the number of modules or entities and relationships. The
cyclomatic complexity metric is popular, and its computation has been
implemented by a variety of software vendors.

The design complexity data can be viewed graphically in conjunction with other
metics to serve as an indicator of the overall complexity of the problem being
solved. For example, the graph shown .n Figure 3.12 compares the growth of the
number of requirements with the number of Jaesign-modules. In this example, the
system appears to be growing more complex as requirements are added.

Number of Design Modules;Total Requirements
400 Tota Reqts

Design
Modules

200 -WOO

100 _ __

QI Q2 Q3 Q4 Q5

Figure 3.12 - Graph of Design Complexity Compared with Total
Requirements

3-20

S3.3.3 TYPE: CODE COMPLEXITY

As with measures of requirements and design complexity, measures of code complexity
capture the aspects of the implementation that make the structure of the code difficult to
comprehend or change. These measures include the following:

Number of code modules

When a large number of modules is included in a program, a large number of
interfaces contributes to the program's complexity. The definition of "module"

depends on the implementation language chosen. However defined, a module must
be easily recognizable, so that two independent people will generate the same count
from the same set of programs.

Cyclomatic complexity

The cyclomatic complexity number is based on the number of decisions embedded
in the program. As with the design, the cyclomatio complexity of a program is

0 generated from the structure formed by a flow chart Of the program, If the flow
chart has e edges and n nodes, then the cyclomatic complexity of the program
represented by the graph Is

e-n+2

For example, Figure 3.13 is the graph of a program with 13 nodes and 16 edges, so

its cyclomatic complexity is 5.

3.21

Figure 3.13 - Graph with Complexity = 6

* Purpose

The measures of code complexity allow management to determine whether the
complexity of the programs changes as development progresses. For example, if
requirements change, the impnct of the changes on the code can be assessed.
Furthermore, the complexity uf both the requirements and the code can be tracked
to determine the relationship between the two,

3.~22

S Data Collection

Both the count of modules and the calculation of cyclomatic Complexity can be.
performed manually. However, automated tools make the job much easier, and
they are available for both calculations. Many programmer tools include the ability
to count the number of modules. The cyclomatic complexity metric is popular, and
its computation has been implemented by a variety of software vendors.

Code complexity data can be viewed graphically in conjunction with other metrics
to serve as an indicator of the overall complexity of the problem being solved. For
example, the graph shown in Figure 3.14 compares the growth of the number of
requirements with the number of code modules. In this example, the system

appears to be growing more complex as requirements are added.

Number of Code Modules; Total Requirements

400 __Total Reqts

300
Code
Modules

200 ___

100 _ _ _ _ __ _ _ _ _

Q1 Q2 Q3 Q4 Q5

Figure 3.14 - Graph of Code Complexity Compared with Total Requirements

McCabe, the creator of the cyclomatic complexity measure, suggests that the

complexity of a module be held at 10 or less. There is little conclusive evidence in
the literature to support the reasonableness of this cut-off. However, each
development organization can establish guidelines for complexity based on past

0 experience. For example, the graph illustrated in Figure 3.15 shows that the average

3-23

complexity has been lowered while the number of code modules has increased

slightly.

Number of Code Modules;Average Complexity

80 -........- Avg Complx

-
- - Code

Modules

40 _

20

Q1 Q2 Q3 Q4 Q5

Figure 3.15 - Graph of Code Complexity Compared with Total Requirements

3.3.4 TYPE: TEST COMPLEXITY

The determination of test complexity depends to some extent on the implementation of the

system. For example, if the system is implemented using a language or technique that can

easily be viewed as a flow chart, then examination of the number of paths to test is feasible.
If, however, the implementation is object-oriented, then the number of object interfaces

may be a more appropriate indicator of test complexity.

Number of paths to test

Each module in a system can be evaluated in terms of the number of paths that must

be tested. For example, the program in Figure 3.16 can be viewed as the flow chart

of Figure 3.17.

3-24

Line
1 SUBROUTINE SORT (X,N)
2 INTEG.R X(100), N, I, J, SAVE, IMi
3 C THIS ROUTINE SORTS ARRAY X INTO ASCENDING
4 C ORD GT
5 IF(N.LT.2)oGO TO 200
7 DO210 1-2,N

7I-I-1
DO 220 J-1,IM1

iF(X(I).GE.X(J)) GO TO 220
10 SAVE--X(I)11Xý -Xl=(&)
"12 XýJ-SA
13 220 CONTINUE
14 210 CONTINUE
15 200 RETURN
16 END

Figure 3.16 - Sample FORTRAN Program

3

9

S~3-25

..- I

S(1)

N<2 (4)

+, I (Sb)

(5c)

reuri (14) (6) 1

j - 0(7a)

ii

j - j I -j(7b)

M no (7c)

yes
ye 7

___•~ (8)

SAVE - X(I)
X(I)X(911)
XQJ)-SAVE

Figure 3.17 - Flow Chart of FORTRAN Program

3-26

In this example, there are five unique paths from start to finish, so there are five

paths to test-

1-4-14

1-4.Sa-Sb-5c-14

1-4-Sa-Sb-5c-6-7a-7b-7c-5b-5c- 14

1-4-5a-Sb-Sc-6-7a-7b-7c-8-7b-7c-5bSc- 14

1-4-5a-5b-5c-6-7a-7b-7c-8-9thruI 1-7b-7c-5b-5c- 14

If object-oriented development, number of object Interfaces to test

For object-oriented development, the number of object interfaces is determined by

the number-of actions that can be taken by an object and done to an object. Thus,

the number of object interfaces Is the sum of all methods for an object. If two

different objects can exercise the same method, then that method should be tested

(and counted) twice.

Purpose

The test complexity measure serves two functions. First, it can be compared with

the complexity of the requirements, design and code to determine whether a

correlation exists. If so, the complexity of an earlier product, such as requirements,

can be used to predict the likely complexity of testing. Such information can be

useful in planning the amount of time needed for thorough testing.

Second, the test complexity measure can be used to determine completeness and

sufficiency of testing. The number of paths o, interfaces actually tested can be

divided by the total number of paths or interfaces (that is, the test complexity) to

compute a measure of sufficiency.

* Data Collection

The test complexity information for a set of projects can be graphed with other

complexity data to explore the relationships between the variables. A typical graph

3-27

comparing requirements complexity with average test complexity per module is
shown in Figure 3.18. The dashed line is the result of a linear regression analysis;
it suggests that an increase in the complexity of the requirements is likely to yield

an increase in test complexity.

Average Test Complexity
80 -

60.. • _____Regression

40*

460 -" - in

20_________ -

20

20 40 60 80 1 00

Requirements Complexity

Figure 3.18 - Graph of Test Complexity Compared with Requirements
Complexity

The test sufficiency also can be calculated, as described above. The sufficiency
data for a set of projects can be compared with information about acceptance
testing, number of defects or maintenance effort to determine whether sufficiency

can be used as a predictive tool.

In many instances, automated tools are available to calculate the number of paths
directly from the code. These tools depend on the implementation language. More
information about appropriate tools can be obtained from the Process and Metrics

Project.

3-28

3.3.5 TYPE: DEFECTS DISCOVERED

Before measures of defects can be described, it is important to understand the difference
between a fault and a defect. A fault is a software error that causes the software to produce

* an incorrect result for a valid input. A defect is evidence of the existence of a fault. Thus,
an input set can reveal several different faults.

The documentation of defects usually begins during reviews of the requirements and
continues throughout the development process. Defects can be identified at walkthroughs,
reviews or inspections of each product, as well as during formal testing. The number of
defects can be useful in evaluating the quality of the resulting system.

Count of defects

* The actual number of defects must be determined dynamically. Once an error
causing a given defect is detected and fixed, the system should be reevaluated to
determine whether the same input set still yields an incorrect result. If yes, then
either there originally were at least two defects, or the change to fix the first defect
introduced a second defect.

The number of defects should be counted with respect to the severity of the defect.
A severity scale from 1 to 4 can be defined for most projects:

I. Minor local impact: Defect causes annoyance or incorrect result; system

functioning is not impeded; effect is isolated.

2. Minor globad impact: Defect causes annoyance or incorrect result; system

functioning is not impeded; effect is widespread and affects multiple functions,

3. Major local impact: Defect prevents the exercise of a major system function;

other system functions can be exercised despite defect.

4, Major global impact: Defect prevents the exercise of at least one major system
function; other system functions impaired or inoperable because of defect.

3-29

Purpose

The number of defects in a system is a broad indication of the degree to which the
system meets its requirements. Moreover, each defect must be tracked, its cause
determined and a solution or workaround implemented. In this way, the number of
corrected defects Is a measure of the effectiveness of testing,

Data Collection

The number of defects can be tracked with the configuration management system
and test reporting tools associated with development. If such a system or tools do

not exist, defects must be documented manually.

It is useful to view defects from several perspectives. First, the number of defects
discovered can be reported weekly, monthly and as a total figure. As testing
progresses, the number of defects discovered each week should decrease, as shown

in Figure 3,19; otherwise, it is likely that correction of existing defects is

introducing new faults, or that a major flaw exists in the design.

3-30

Defects Reported -

80

60 -- ,-

40 ---

20 ------

0
Dec Jan Feb Mar Apr May

DESIGN CODE TESTING

Figure 3.19 - Graph of Defects Discovered Over Time

It is also helpful to measure the number of defects per unit of size, where size is
measured as described in section 3.2.1. Such a measure is called the defect density,

and is used an overall measure of the quality of the finished product. Historical
information about defect density can be evaluated with respect to several process
characteristics to determine whether certain techniques or tools have an effect upon

the defect density.

Another useful indicator of quality is the percentage of defects reported that have
been corrected. Ideally, all defects should be eliminated, but it is often impossible
to do so. The tracking over time of the percentage of defects eliminated is a
measure of the speed at which the development team responds to defect reports as
well as an indicator of how close the product is to its quality goals. Figure 3.20

depicts v graph tracking percentage of coirected defects.

3.31

Percentage of Defects Reported That Have Been Corrected
100

80 _ _ _ _ _ _ _ __ _ _ _

60

40

20

0

Dec Jan Feb Mar Apr May

DESIGN CODE TESTING

Figure 3.20 - Graph of Percentage of Defects Corrected Over Time

3.3.6 TYPE: REQUIREMENTS FAULTS DISCOVERED

Once defects are reported, the faults causing those defects must be idertified, analyzed and
corrected. It is important to know where the faults occur, because the number of faults in
each product is an indication of the quality of that product. Each time a defect is counted,
the corresponding faults and their locations should be tracked, Faults in requirements
include ambiguous terminology, conflicting requirements or incomplete specifications.

Count of faults found in the requirements

The count of faults in requirements is made as each defect is corrected. If one fault

causes more than one defect, the fault is counted only once.

3-32

* Purpose

The number of faults in requirements acts as a measure of the quality of the
requirements.

Data Collection

The number of faults in requirements should be collected as defects are tracked and
corrected. It may be useful to calculate the number of faults as a percentage of the
total number of requirements to yield an overall measure of quality. Ten faults out
of 20 requirements means that the requirements specification is of poor quality,
whereas 10 faults out of 1500 requirements indicates a relatively good set of initial
requirements.

.3.3.7 TYPE: DESIGN FAULTS DISCOVERED

Similarly, the faults in design that are identified as causing defects must be analyzed and
Scorrevted. Faults in design include ambiguous, terminology, conflicting or incomplete

definitions, conflict with the requirements, lack of cohesion, inappropriate coupling, or
improper documentation.

Count of faults found in the design

The count of faults in design is made as each defect is corrected. If one fault causes
more than one defect, the fault is counted only once.

0 Purpose

The number of faults in design acts as a measure of the quality of the design,

. Data Collection

The number of faults in design should be collected as defects are tracked and
corrected. It may be useful to calculatc the numb,.r of faults as a percentage of the
total number of design components or modules to yield an overUll measure of
quality. Ten faults out of 20 design components means that the design is of poor
quality, whcreas 10 faults out of 1500 components indicates C relatively good

* design.

3-33

3.3.8 TYPE: CODE FAULTS DISCOVERED

Fiiially, the faults in the code that are identified as causing defects must be analyzed and
corrected, Faults in code include conflicting or incomplete definitions, conflict with the
requirements or design, misuse of a language construct, improper syntax, lack of cohesion,
inappropriate coupling or improper documentation.

Count of faults found in the code

The count of faults in the code is made as each defect is corrected. If one fault
causes more than one defect, the fault is counted only once.

Purpose

The number of faults in the code acts as a measure of the quality of the code.

Data Collection

The number of faults in code should be collected as defects are tracked and

corrected, It may be useful to calculate the number of faults as a percentage of the
total number of code components or modules, or as a percentage of the software size
to yield an overall measure of quality. Ten faults out of 20 code modules means
that the design is of poor quality, whereas 10 faults out of 1500 modules indicates
a relatively good implementation. Similarly, 10 faults in 200 lines of code is not as
good as 10 faults in 200,000 lines of code.

3.3.9 POSSIBLE ADDITIONAL PRODUCT METRICS

When customer requirements dictate that significant amounts of documentation be written

(as often happens on government contracts), the number of pages of documentation may be
a desira ble characteristic to uuck and correlate with effort or duration. The set of pioduct
metrics also may include number of pages of documentation as a product metric.

3.4 PHASE 3--PROCESS METRICS

Ihe preceding sections have addressed the first three levels of process maturity and the
corresponding appropriate metri,-s. Studies by the Software Engineering Institute ofmore
than 100 software development organizations reveal that most projects are at levels 1, 2 and

3-34

3. Very few development projects have reached levels 4 or 5; the managed or optimizing

levels. For this reason, this section discusses only the types of Zetrics recommended at

level 4, but does not provide the detail of previous sections.

SIf the maturity of the process has reached the managed level, then process-wide metrics can

be collected and analyzed. These metrics reflect characteristics of the overall process and

of the interaction among components of the process. A distinguishing characteristic of a

managed process is that the development of software can be carefully controlled. Thus, a

major characteristic of the recommended metrics is that they help management to control

the development process.

The Process and Metrics Project recommends that the following ,types of process metrics

,. be considered for a managed project:

Process type: What process model is used in development? For example, the

waterfall, prototype and transformational development paradigms are very

different. Examination of the process type, in concert with other product and
Sprocess characteristics, may reveal that the type of process correlates highly with

certain positive or negative consequences.

Amount of producer reuse: How much of what products is designed for reuse? This

measure includes reuse of requirements, design modules and test plans as well as

code. By designing components for reuse, one project group may benefit from the

effort of another group. Effort in understanding, creating and testing code can be

minimized, thus making the project easier to control, Furthermore, future projects

can benefit from the reuse of components produced here.

Amount of consumer reuse: How much of the project reuses components from

other projects? This measure includes reuse of requirements, design modules and

test plans as well as code. By using tested, proven components, effort can be

minimized and quality can be improved.

Defect identification: How and when are defects discovered? Knowing whether

defects are discovered during requirements reviews, design reviews, code

walkthrough and reviews, integradion testing or acceptance testing will indicate

whether those process activities are effective.

•-35

Use of defect density model for testing: To what extent does the number of defects
determine when testing is complete? Many organizations have no overall defect
goals for testing the product, so there is no way to judge the quality of either the

testing or the code. The use of defect dendity models has been shown to control and
focus testing as well as to increase the quality of the final product.

Use of configuration management: Is a configuration management scheme
imposed on the development process? Configuration management and change
control afford management a great deal of control over the development process.

Traceability links ca't be used to assess the impact of alterations in some or all

development activities or products.

- Module completion over time: At whit rates are modules being completed?

Although ostensibly a product metric, the rate at which modules are identified,
designed, coded, tested and integrated reflects the degree to which the process and

development environment facilitate implementation and testing. If the rate is slow,

the process may need improvement.

* Capital intensity: To what degree do capital expenditures affect the budget and
productivity of a project? The software engineering marketplace is rife with tools

and techniques whose proponents claim will increase the productivity of
development teams and the quality of products. Measures of capital intensity allow

measurement of the actual effects of capital investment on quality and productivity.

These historical metrics, evaluated during a post mortem of a project, tell us
whether we have benefited from our investment and to what extent. Such

information is useful in planning new projects. In particular, measures of capital

intensity can be used to decide the number of projects over which a capital

investment must be amortized in order to reap its benefits.

All of the process metrics described above are to be used in concert with the metrics

discussed in earlier sections. Relationships can be determined between product

characteristics and process variables to assess whether certain processes or aspects of the

piocess are effective at meeting productivity or quality goals. The list of process measures

is by no means complete and is suggested only as an initial attempt to capture important

information about the process itself.

3-36

4

3.S PHASE 4: PROCESS METRICS WITH FEEDBACK FOR CHANGE

The final phase of metrics collection involves an optimizing process. Here, feedback
allows not only control of process activities but also the possibility of changing the process
itself as development progresses. This process phase can follow only from a well-
controlled process (that is, a managed process). Its associated metrics will not be
recommended until the metrics for Phases 1, 2 and 3 are well-establilhsed on Contel projects
and evaluated for their utility and practicality.

The next section of this document explains how Contel business units can begin to establish
a comprehensive metrics program based on the recommended metrics.

3.37

SECTION 4

USING THE METRICS SETS

4.1 STEESTO TAKE IN USING THE METRICS SETS

The recommended metics of the previous section are most useful when implemented in a

careful sequence of process and metrics activities, These activities lay the groundwork for

effective project management by evaluating the needs and characteristics of development

before the appropriate phase of metrics collection is identified. The typical Contel business

unit should take the following steps:

Conduct process assessment: Working with a set of guidelines or with a member

of the Process and Metrics team, the project management should determine the level

of process maturity achievable (for a proposrA project) or implemented (for an on-

going one).

* Consult with Process and Metrics Project team: Once theprocess level is known,
the Process and Metrics team and the project managers can decide which phase of

metrics collection is most appropriate. For example, if Phase 2 is indicated by the

process level, but the on-going project currently collects no metrics data at al, then

Phase I may be suggested as a starting point, with Phase 2 metrics to be added at a

later time. The result of the consultation will be an action plan that describes which

metrics to collect and when to collect them,

Recommend metrics, tools, techniques: When the types of metrics are determined,

the project managers should identify tools and techniques to be used on the project.

These tools and techniques are to be chosen with the overall goals of the project in

mind. Whenever possible, automated support for metrics collection and analysis
will be implemented as port of the project development environmeit. It is essential

that metrics collection and analysis not impede the primary development activities;
thus, metrics collection and analysis should be as unobtrusive as possible.

Periodically, the Process and Metrics team will publish reports abcut metrics

collection and analysis tools available commercially for use on Contel projects.

4-1

Project managers may rely on this information or may request consultation with the
Process and Metrics team about the special needs of the project at hand.

Help with cost and schedule estimation- If requested, the Process and Mettics team
will provide assistance with cost and schedule estimation. In concert with the data
provided by project management, automated tools will be made available to suggest

initial estimates of cost and schedule based on project characteristics. Where

possible, estimates also will be made of the risk of missing cost and schedul: goals.
Tools can be used as development prcgresses to track revised estimates of cost and

schedule. As custodian of a large set of such automated tools, the Process and
Metrics team will suggest the most accurate tools based on the history of similar
projects.

Collect appropriate level of metrics: The project managers will oversee the

colJeLtion of metrics.

" Construct project database: A database of project metrics will be designed,

developed and populated, with assistance from the Process and Metrics team, if

necessary. This database will be used for analysis where appropriate.

" Evaluate cost and schedule: When the project is complete, the initial and
intermediate estimates of cost and schedule will be evaluated for accuracy. A

d etermination will be made of the factors that may account for discrepancies

between predicted and actual values.

" Evaluate productivity and quality: An overall assessment of project productivity

and product quality will be made based on the metrics available.

" Piuvide basis for future estimates: Finally, the contents of the project database will
be supplied to the Process and Metrics team for incorporation in a Contel corporate

metricq database. This larger database will be used to provide historical
information as a basis fTr estimation on future projects. In addition, it will be used
to suggest the most appropriate tools and techniques for proposed projects.

4-2

. 4.2 BENEFITS OF USING THE METRICS SETS

The benefits of metrics collection and analysis are manifold. The increased understanding
of the process and control of the project outweigh the effort needed to capture, store and
analyze the information required. Objective evaluation of any new technique, tool or
method is impossible without quantitative data describing its effect. Thus, the use of the
recommended set of metrics should result in:

• Enhanced understanding of the process

a Increased control of the process

* A clear migration path to more mature proce3s levels

• More accurate estimates of project cost and 5chedule

• More objectivc, evaluations of changes in technique, tool or method

a More accurate estimates of the effects of changes on project cost and schedule

The understanding and experience gained by incorporating metrics are benefits that will
carry over to future development projects. The implementation and use of metrics will help
Contel produce a higher quality software product in a more efficient manner,

4-3

APPENDIX A

REFERENCES

1. W. Humphrey, Managing the Software Process, Addison Wesley, Reading, MA, 1989.

2. S. D. Conte, H. E. Dunsmore and V. Y. Shen, Software Engineering Metrics and
Models, Benjamin-Cummings, Menlo Park, CA, 1986.

3. A. J. Albrecht, "Measuring Application Development Productivity", Proceedings of
the Joint SHARE/GUIDE Symposium, October 1979, pp. 83-92.

4. H. P. Schultz, Software Management Metrics, Mitre Technical Report M88-1-ESD-
TR-88-001, Bedford, MA, 1988.

0

A-!

E CTC TECHNICAL DOCUMEN,REPLY FORM ..

WE ARE INTERESTED IN YOUR COMMENTS ON THIS PUBLICATION, PLEASE
TAKE A MOMENT TO FILL OUT AND RETURN THIS FORM TO TIHE ADDRESS
BELOW. THANK YOU FOR YOUR INTERESTI

DATE_ DOCUMENT NO.CTC-TR-89-017

DOCUMNT TILE: RECOMNIMENDATIONS FOR AN INITIAL SET OF
SOMMWAR. METRCS..

AUTHOR(S): SHARI LA.WENCE PFLEEGER

YOUR NAM.E_ _ _ _ _ _ _ __

ADDRESS/LOCATION.

CITY/STATEZIP_

TELEPHONE NUMBER L__L

1. HOW DID YOU RECEIVE THIS DOCUMENT?
CTC MAILING LIST
SPECIAL REQUEST
CICIA ORDER FORM

2. DID YOU FIND IT HELPFUI/USEFUL FOR YOUR NEEDS?
Y- N SOMEWHAT-

3, SUGGESTIONS / COMMENTS

Please remove this form from the publication and mail it to Atm: Diane Weldin,
Publications Manager, Contel Technology Center, 15000 Conference Center Dr., PO Box
10814, Chantilly, VA 22021-3808.

